Integrate scRNA-seq datasets#
scRNA-seq data integration is the process of analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.
Here, weโll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.
Setup#
!lamin load test-scrna
Show code cell output
๐ก found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
โ
loaded instance: testuser1/test-scrna
import lamindb as ln
import lnschema_bionty as lb
import pandas as pd
import anndata as ad
โ
loaded instance: testuser1/test-scrna (lamindb 0.51.2)
ln.track()
๐ก notebook imports: anndata==0.9.2 lamindb==0.51.2 lnschema_bionty==0.30.2 pandas==1.5.3
โ
saved: Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-08-31 00:32:13, created_by_id='DzTjkKse')
โ
saved: Run(id='KCdYSjc09PHVn5JwlTNJ', run_at=2023-08-31 00:32:13, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')
Access #
Query files by provenance metadata#
users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("register scrna")
id | __ratio__ | |
---|---|---|
name | ||
Validate & register scRNA-seq datasets | Nv48yAceNSh8z8 | 53.846154 |
Integrate scRNA-seq datasets | agayZTonayqAz8 | 47.619048 |
transform = ln.Transform.filter(id="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
storage_id | key | suffix | accessor | description | version | initial_version_id | size | hash | hash_type | transform_id | run_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
vDMpekU3pOyqlg5TTfLc | emG4Bk3m | None | .h5ad | AnnData | Conde22 | None | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | MdQkKuMtppXchQY1C70T | 2023-08-31 00:31:41 | DzTjkKse |
Hl9GtFwV9gghkmif8pyJ | emG4Bk3m | None | .h5ad | AnnData | 10x reference pbmc68k | None | None | 589484 | eKVXV5okt5YRYjySMTKGEw | md5 | Nv48yAceNSh8z8 | MdQkKuMtppXchQY1C70T | 2023-08-31 00:32:04 | DzTjkKse |
Query files based on biological metadata#
assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
experimental_factors=assays.single_cell_rna_sequencing,
species=species.human,
cell_types=cell_types.conventional_dendritic_cell,
)
query.df()
storage_id | key | suffix | accessor | description | version | initial_version_id | size | hash | hash_type | transform_id | run_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
Hl9GtFwV9gghkmif8pyJ | emG4Bk3m | None | .h5ad | AnnData | 10x reference pbmc68k | None | None | 589484 | eKVXV5okt5YRYjySMTKGEw | md5 | Nv48yAceNSh8z8 | MdQkKuMtppXchQY1C70T | 2023-08-31 00:32:04 | DzTjkKse |
vDMpekU3pOyqlg5TTfLc | emG4Bk3m | None | .h5ad | AnnData | Conde22 | None | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | MdQkKuMtppXchQY1C70T | 2023-08-31 00:31:41 | DzTjkKse |
Transform #
Compare gene sets#
Get file objects:
file1, file2 = query.list()
file1.describe()
๐ก File(id='Hl9GtFwV9gghkmif8pyJ', suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', size=589484, hash='eKVXV5okt5YRYjySMTKGEw', hash_type='md5', updated_at=2023-08-31 00:32:04)
Provenance:
๐๏ธ storage: Storage(id='emG4Bk3m', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-31 00:32:11, created_by_id='DzTjkKse')
๐ transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-31 00:32:04, created_by_id='DzTjkKse')
๐ฃ run: Run(id='MdQkKuMtppXchQY1C70T', run_at=2023-08-31 00:30:45, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
๐ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-31 00:32:11)
Features:
var (X):
๐ index (695, bionty.Gene.id): ['Y7ufrND14Kay', 'KSe7z0us4sFY', 'RrWFxYmu7u59', 'wgO8E8BPRVSZ', '20jirs0l8k0p'...]
external:
๐ assay (1, bionty.ExperimentalFactor): ['single-cell RNA sequencing']
๐ species (1, bionty.Species): ['human']
obs (metadata):
๐ cell_type (9, bionty.CellType): ['B cell, CD19-positive', 'CD14-positive, CD16-negative classical monocyte', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'dendritic cell', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated']
file1.view_flow()
file2.describe()
๐ก File(id='vDMpekU3pOyqlg5TTfLc', suffix='.h5ad', accessor='AnnData', description='Conde22', size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', updated_at=2023-08-31 00:31:41)
Provenance:
๐๏ธ storage: Storage(id='emG4Bk3m', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-31 00:32:11, created_by_id='DzTjkKse')
๐ transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-31 00:32:04, created_by_id='DzTjkKse')
๐ฃ run: Run(id='MdQkKuMtppXchQY1C70T', run_at=2023-08-31 00:30:45, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
๐ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-31 00:32:11)
Features:
var (X):
๐ index (36503, bionty.Gene.id): ['AZXeLz7ACIvE', '7NLIjs50oZ0F', 'kkQS5uRD6ael', 's9dhYXK0eu4A', 'xn9ypGwN0mSz'...]
obs (metadata):
๐ cell_type (32, bionty.CellType): ['dendritic cell, human', 'plasmablast', 'animal cell', 'CD8-positive, alpha-beta memory T cell', 'CD4-positive helper T cell']
๐ assay (4, bionty.ExperimentalFactor): ['single-cell RNA sequencing', "10x 3' v3", "10x 5' v2", "10x 5' v1"]
๐ tissue (17, bionty.Tissue): ['lamina propria', 'thoracic lymph node', 'mesenteric lymph node', 'jejunal epithelium', 'transverse colon']
๐ donor (12, core.Label): ['D503', '637C', 'A37', '640C', 'A35']
file2.view_flow()
Load files into memory:
file1_adata = file1.load()
file2_adata = file2.load()
๐ก adding file Hl9GtFwV9gghkmif8pyJ as input for run KCdYSjc09PHVn5JwlTNJ, adding parent transform Nv48yAceNSh8z8
๐ก adding file vDMpekU3pOyqlg5TTfLc as input for run KCdYSjc09PHVn5JwlTNJ, adding parent transform Nv48yAceNSh8z8
Here we compute shared genes without loading files:
file1_genes = file1.features["var"]
file2_genes = file2.features["var"]
shared_genes = file1_genes & file2_genes
len(shared_genes)
695
shared_genes.list("symbol")[:10]
['MRPL21',
'PRMT2',
'CALM1',
'TRAM1',
'PRR7',
'CD3G',
'HLA-DQB1',
'SESN2',
'IFITM3',
'CAPN1']
We also need to convert the ensembl_gene_id to symbol for file2 so that they can be concatenated:
mapper = pd.DataFrame(shared_genes.values_list("ensembl_gene_id", "symbol")).set_index(
0
)[1]
mapper.head()
0
ENSG00000197345 MRPL21
ENSG00000160310 PRMT2
ENSG00000198668 CALM1
ENSG00000067167 TRAM1
ENSG00000131188 PRR7
Name: 1, dtype: object
file2_adata.var.rename(index=mapper, inplace=True)
Compare cell types#
file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()
shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['conventional dendritic cell',
'CD16-positive, CD56-dim natural killer cell, human']
We can now subset the two datasets by shared cell types:
file1_adata_subset = file1_adata[
file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]
file2_adata_subset = file2_adata[
file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]
Concatenate subsetted datasets:
adata_concat = ad.concat(
[file1_adata_subset, file2_adata_subset],
label="file",
keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร n_vars = 126 ร 695
obs: 'cell_type', 'file'
obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type file
CD16-positive, CD56-dim natural killer cell, human Conde22 114
conventional dendritic cell Conde22 7
CD16-positive, CD56-dim natural killer cell, human 10x reference pbmc68k 3
conventional dendritic cell 10x reference pbmc68k 2
dtype: int64
Show code cell content
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
๐ก deleting instance testuser1/test-scrna
โ
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
โ
instance cache deleted
โ
deleted '.lndb' sqlite file
โ consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna